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CHAPTER 4:
EMPIRICAL COMPARISON OF
NONMETRIC TEMPORAL PATH ANALYSIS

AND THE LINEAR MODELS APPROACH

Overview

Education has been defined as a teaching~studenting process in which
someone deliberately attempts to guide another who is attempting to
learn something somewhere (Steiner, 1978). Thus, the basic component$ of
education are teacher, student, content and setting. The science of edu-
cation should result in knowledge about these four components and their
interrelations. If specific relationships are predictable, this knowl-
edge can be used to forecast results of educational processes and
control educational outcomes.

A general systems perspective suggests a state—space approach to the-
analysis of educational system component relations (e.g., Maccia &
Maccia, 1966; Wienberg, 1975). A system has been defined as a group of
components with at least one affect relation which has information. An
affect relation is a connection of one or more components to one or more
other components (Maccia & Maccia, 1966). Based on information theory,
states of each system component can be characterized by categories in a
classification. The connections among components can be conceived as a
subset of the Cartesian product of categories among classifications

which temporally characterize changing states of system components. In
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NTPA the joint and sequential occurreﬁces of system component states are
observed and enumerated. The likelihood of system processes or patterns
is estimated by observing an individual system over time and enumerating
the relative frequency and/or duration of specified temporal paths. An
estimate of the probability of a given relation is obtained for an
individual system.

For example, in studying the relation between teacher instruction
and student engagement, ome might find after observing one classroom on
ten different two-hour occasions that the likelihood of student task
engagement during direct instruction is .98 for this systém. Another
independent, individual system might also be observed on ten different
occasions, and one might find that the likelihood of the relationship of
student task engagement given direct instruction is .94 for this system.
Similarly, other independent systems of the same type (e.g., elementary
classrooms in the U.S.) may be randomly selected and observed, and the
likelihood of this particular relation is estimated for each of these
systems.

If it is the case that systems are randomly selected (i.e., each has
an equal probability of being selected) from the population of interest
and that systems are independent, then a confidence interval that is
likely to contain the population mean can be constructed for this par-
ticular relationship (student task engagement given direct instruction,
or EN|DI). For example, if it can be assumed that the sampling distribu-

tion is normal, then a confidence interval can be estimated by:
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where X is the sample mean, E(a/z) is the number of standard deviation
units above or below the mean of a normal distribution which demarcate
a given proportion of its area, and the standard error (8.E.) is the
standard error of the sample mean. The standard error decreases as a
function of the sample size (N, the number of independent systems
observed) and the sample standard deviation (S.D.):

S.E. = S.D./(N—l)l/z

The alpha level can be chosen for whatever level of confidence desired.
These are standard parametric statistical procedures for estimation of
confidence intervals (Hays, 1973).

In summary, a relation in NTPA is operationalized as a single vari-
able. The measure of the value of that variable is the probaEility of
occurrence of the nonmetric temporal path which specifies the relation.
Replication across independent systems permits averaging of probabili~
ties for individual systems so that statistical generalizations can be
made about the mean probability of the relation for the population of
systems. In this example, the relation was specified as student engage-
ment given direct instruction (EN|DI) and the measure of the relation
was the observed percent time of its occurrence, used to estimate the
probability of the occurrence of the relation.

In correlational analysis two variables would be measured for each
independent system sampled. A measure of DI and a separate measure of EN
would be obtained in this example. To be consistent with the above,
these separate measures would be the observed percent time of EN and of

DI. The linear relationship of these pairs of measures would be
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indicated by the Pearson product moment coefficient. The strength of the
linear association would be estimated by the square of the product
moment coefficient, indicating the percent of variance accounted for in
the dependent variable by the independent variable.

In analysis of variance (ANOVA) two treatment groups would be form-
ed: one which received direct instruction and a control group which did
not. The dependent variable would be student task engagement. Group
means would be statistically compared for differences by means of an F
test. Strength of association between independent and dependent

variables would be estimated by eta squared or omega squared.

Method

Observational data were collected on 25 mildly mentally handicapped
students and their teachers during the second year of a study of academ-
ic learning time and student achievement (Rieth & Frick, 1982). Students
were observed a total of eight to ten hours each at different times dur-
ing the school day over a period of about six months. Observational data
were collected on coding forms by highly trained observers, using the
Academic Learning Time Observation System (ALTOS) (Frick & Rieth, 1981).
During mathematics and reading activities observers coded student and
instructor behavior at one-minute intervals.

At each sampling moment type of instruction available to the target
student was characterized by one of the following categories: Academic
monitoring (AM), academic feedback (AF), academic questioning (AQ), aca-
demic explaining based on student need (XN), planned academic explaining
(XP), academic structuring/directing (SD), academic task engagement

feedback (TF), or null (NU). In addition, student academic task
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engagement was characterized at each sampling moment as: engaged written
(EW), engaged oral (EO), engaged covert (EC), engaged with structure/di-
rections (ED), non-engaged interim (NI), non-engaged wait (NW), or non-
engaged off-task (NO). These individual categories are defined elsewhere
(Frick & Rieth, 1981; Fisher, Berliner, Filby, Marliave, Cohen, Dishaw &
Moore, 1978). :

For purposes of simplification in the example below, direct instruc-
tion (DI) was considered as AM or AF or AQ or XN or XP or SD or TF.
Direct instruction refers to academic transaction with the target stu-
dent or a group of students of which the target student is a member dur-
ing an educational activity. From the point of view of a given student
(i.e., target student), the source of direct instruction could be the
teacher, another person in the classroom such as a peer or an aide, or
something capable of sending information to and receiving information
from the student (e.g., programmed instruction via computer). By and
large, the teacher was observed to be the source of direct instruction
in the Rieth and Frick (1982) study. If there was no academic trans-
action with the target student or group containing that student during
an academic educational activity, then the type of instruction was con-—
sidered to be non-direct (NDI). Similarly, student engagement (EN) was
considered as EW or EO or EC or ED, and student non-engagement (NE) as
NI or NW or NO. A student was considered to be engaged in an academic
activity if she or he appeared to be attending to the academic substance
of an educational activity. Thus, the two classifications were reduced

to two categories each for purpose of illustration:
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Classification Categories
Academic instruction available Direct (DI)

to student: Non-direct (NDI)
Student orientation to instruction: Engaged (EN)

Non-engaged (NE)

Since these two classifications were jointly coded at each sampling
moment, a nonmetric temporal path analysis of the relation among cate-
gories in these classifications could be performed. Since the data from
the Rieth and Frick (1982) study were not collected in continuous real
time, true sequential analysis (i.e., 'If ..., then ...' queries——see
Chapter 2) was not possible with these data. However, it was possible to
analyze the simultaneous occurrence of categories in different classifi-

cations.

The Linear Models Approach (IMA): Correlational Analysis

In correlational analysis direct instruction (DI) is considered as a
random variable. For each student-instructor pair a measure of DI was
constructed by dividing the total frequency of one-minute samples in
which DI occurred by the total frequency of one-minute samples observed
for that pair. For example, if a student-instructor pair were observed
for 600 minutes and 350 were instances of DI, then the proportion of DI,
p(DI), is 350/600, or .583. Conversion to proportions was necessary
since not all teacher-student pairs were observed for the same total
amounts of time. Thus, the proportions normalize the frequencies of
one-minute samples to a common metric.

Similarly, student engagement (EN) is considered as a separate ran-—

dom variable, where proportions are likewise used as measures of EN.
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Since there are only two categories in each classification, non-direct
instruction (NDI) and non-engagement (NE) provide no additional informa-
tion, respectively, for the instructor and student classifications. For
each student-instructor pair the proportion of DI determines the propor-
tion of NDI, and the proporfion of EN determines the proportion of NE,
since the proportions must sum to one for each classification for each
student-instructor pair.

To estimate the relationship of DI and EN a bivariate distribution
was formed. See Figure 3. The H(EN) was .741 (S.D. = .101) and the
p(DI) was .432 (S.D. = .144). The Pearson product moment coefficient
was .57 and statistically significant (p < .05). Thus, there is a posi-
tive relationship between DI and EN, significantly greater than zero,
according to correlational analysis, and represented by the linear re-
gression equation, b(EN)’ = .57 + .40p(DI). The standard error of beta
was .12. Rnowledge of the proportion of DI reduces the uncertainty of
the prediction of the proportion of EN by about 32 percent (52 = ,32).
It would appear that, although positivé, the relationship between DI and
EN is not very strong in terms of percent of variance accounted for
(i.e., proportional reduction of error, or PRE). About twice as much
variance is unpredictable as is predictable. The relation is symmetric-

al, since r

= . t .
ZEN,DI EDI,EN Thus, the percent of variance of DI accounted

for by EN is also 32 percent. In addition, since the sample size is
relatively small, the beta weight for the linear regression equation has
a relatively large standard error. One would have little confidence in

estimating the population beta with such a small sample.
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Figure 3. Bivariate Distribution of Birect Instruction (DI) and
Student Task Engagement (EN). Regression Line:

EN' = .57 + .40DT .
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Nonmetric Temporal Path Analysis (NTPA)

The very same observational data for the 25 student-instructor pairs
were also analyzed by the NTPA approach. Joint and conditional distribu-
tions were formed for DI & EN, DI & NE, NDI & EN, NDI & NE, EN|DI AND
EN|NDI. See Table 2. Note that DI & (EN OR NE) = DI; EN & (DI OR NDI) =
EN, etc.

The relation, EN|DI, is considered to be a single random variable.
For each student-instructor pair a measure of EN|DI was constructed by
counting the one-minute samples in which DI & EN occurréd and dividing
by the frequency of one-minute samples in which DI occurred. The propor-
tion time that this nonmetric temporal path was observed was used to
estimate the probability of the relation. The estimated probability of
EN given DI, H(EN|DI), was .967 (S.D. = .029). In other words, given
that DI is occurring, students are very likely to be engaged in the edu-
cational activity. The odds that students are on-task compared to being
off-task during direct instruction are about 19 to 1. On the other hand,
in the absence of DI students are engaged about 57 percent of the time
[P(ENINDI) = .573, S.D. = .142]. A further interpretation is that
students are about 13 times more likely to be off-task (NE) when no DI
is provided compared to being off-task when DI is provided.

The relation between DI and EN is asymmetrical, since the H(EN|DI)
is not equal to the H(DI|EN): .967 # .561 (the latter is not shown in
Table 2). Furthermore, the standard error of the H(EN|DI) is relatively
small (.003). The 95 percent confidence interval for the H(EN|DI) is
.955 to .979. Since the sampling distribution is negatively skewed for a

mean proportion this close to 1.0, a different method of determining the
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Table 2. Results from Nonmetric Temporal Path Analysis: Proportion Time

System DI* EN DISEN DISNE NDISEN NDISNE ENIDI EN|NDI
1 .50 .80 .46 .04 .34 .16 .92 .67
2 .39 .49 .37 .02 .12 .49 .95 .20
3 .27 .56 .26 .01 .30 .43 .97 .41
4 .34 .69 .34 .00 .35 .31 1.00 .53
5 .48 .73 47 .01 .25 .26 .98 .49
6 .40 .75 .39 .01 .35 .25 .98 .59
7 44 .84 .40 .04 44 11 .91 .80
8 .36 .75 .33 .03 .42 .22 .92 .65
9 .30 .67 .29 .01 .39 .32 .96 .55
10 .32 .71 .31 .01 .40 .29 .98 .56
11 42 .68 .42 .00 .26 .31 .99 .46
12 .38 .84 .37 .01 .47 .15 .97 .75
13 .31 .63 .31 .00 .32 .37 1.00 .46
14 .54 .87 .52 .02 .36 11 .97 .77
15 .81 .92 .81 .00 .11 .08 1.00 .57
16 .67 .77 .62 .05 .15 .18 .93 .45
17 .24 .76 .24 .00 .52 .24 1.00 .69
18 .34 .74 .34 .00 .40 .25 .99 .61
19 .59 .87 .58 .01 .29 .12 .99 .71
20 .52 .64 .48 .04 .16 .33 .93 .33
21 .62 .83 .58 .04 .25 .13 .94 .66
22 .23 .65 .22 .01 .43 .34 .97 .56
23 .29 .79 .28 .01 .51 .20 .97 .71
24 .54 .75 .52 .02 .23 .24 .97 .49
25 .51 .82 .50 .00 .31 .18 .99 .63
Mean 432 . 741 .416 .015 . 324 .243 .967 .573
5.D. 144 .101 .139 .015 114 . 104 .029 . 142
*Key:

DI = Direct Imstruction

NDI = Non-direct Instruction
EN = Student Engagement

NE = Student Non—engagement
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95 percent confidence interval is probably warranted. This is discussed

further in a subsequent section.

A Comparison of NTPA and Correlational Analysis

NTPA and correlational analysis are mathematically related in cer-
tain special cases, although interpretation of the results differs due
to assumptions about the nature of the relationship. The reason the two
approaches are mathematically related in some instances is that the pro-
portions or probabilities of categories in a classification are ipsative
~-i.e., they must sum to one by definition, since they are mutually
exclusive and exhaustive of the classifcation. That is, for classifica-

tion, A, with categories, A. through én:

1

p(Al) + p(Az) ce. + p(An) =1, p(Ai) > 0.
Furthermore, conditional probability is defined:

p(Bi!Aj) = p(Bi & Aj)/p(Aj).
Thus :

p(Bi & Aj) = p(BilAj)p(Aj).

It should be noted that the formula for conditional probability will
only be true empirically in NTPA when there is a one-to-ome correspon-
dence between occurrences in classifications A and B. Given the defini-
tion of NTPA and the time measure that is used here, these conditions
are satisfied. Moreover, the relation, EN|DI, is not the same as the

relation, 'If DI, then EN'. See Chapter 2. The latter implies a
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sequence, where DI must begin occurring before EN begins occurring. The

former implies the simultaneous occurrence of EN and DI, given that DI

is occurring--i.e., it does not matter whether EN or DI begins first.
Therefore, in the above example of the relation between EN and DI,
the following equations are true, given the classical probability

calculus:

p(EN) = p(EN & DI) + p(EN & NDI) [1]
p(DI) + p(NDI) = p(EN) + p(NE) = 1 [2]
p(EN|DI) = p(EN & DI)/p(DI) [3]
p(EN|NDI) = p(EN & NDI)/p(NDI) [4]

From [3] and [4]:

p(EN & DI) = p(EN|DI)p(DI) (5]

p(EN & NDI) = p(EN|NDI)p(NDI) [6]
From [2]:

p(NDI) = 1 - p(DI) [7]

From [6] and [7]:
p(EN & NDI) = p(EN|NDI)(1 - p(DI)) [8]

From [5], [8] and [1]:

p(EN) = p(EN|DI)p(DI) + p(EN[NDI)(1 - p(DI))
= p(EN|DI)p(DI) + p(ENINDI) - p(EN|NDI)p(DI) (9]
Regrouping:
p(EN) = p(EN|NDI) + [p(EN|DI) - p(EN|NDI)]p(DI) [10]

Equation [10] is of the form for a linear regression:

Y =A + BX [11]
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If the conditional probabilities are known, then what appears to be a
regression equation may be formed. From Table 1, p(EN|NDI) = .573 and

B(ENIDI) = .967. Substituting these values into [10]:

p(EN)' .573 + (.967 - .573)p(DI)

= .573 + .39p(DI) [12]

This is precisely the same regression equation that was obtained earlier
in the correlational analysis with the exception of errors due to round-
ing. If the relation is viewed linearly and metrically, and if the pro-
portional amount of DI is known, then the proportional amount of expect-
ed EN can be predicted from [12], although with little confidence due to
the relatively small sample.

A similar equation predicting EN from NDI can be constructed:

p(EN)' = .967 - .40p(NDI) [12*]

If the raw regression weights are converted to standardized regression
weights (or path coefficients), then the relationship of DI and EN can

be depicted by a path diagram:

Residual or Disturbance
.82
.57

DI——————3»EN [P1]
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In other words, an increase in DI by 1 S.D. unit is associated with and
increase of .57 S.D. units of EN. Note that the path coefficient is —-.57
if NDI is used to predict EN, since DI and NDI are ipsative and perfect-
ly negatively correlated when there are only two categories in a classi-

fication. It is also the case that the following path diagram obtains:

Residual or Disturbance
.82
.57

EN —————» DI [p2]

These identical path coefficients are due to the symmetrical nature of
the correlation coefficient (equal to the standardized beta which is the
path coefficient in the bivariate case). Both [Pl] and [P2] are viable
interpretations of the relationship. Adherents of metric path analysis
would argue that theory should dictate which directionality is more
plausible.

At this point one might be tempted to argue that correlational
analysis is more adequate than NTPA since the former retains more in-
formation about the nature of the relation. That is, not only can the
conditional probabilities be estimated at the points on the regression
line where p(DI) equals zero and one, but also in the intermediate situ-—
ations where p(DI) lies between zero and one. It may be argued that NTPA
merely represents special cases of correlational analysis.

However, there is one assumption in NTPA that does not obtain in
correlational analysis--i.e., a measure of a variable must be greater than

or equal to zero and less than or equal to one. Only a limited set of
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regression equations can satisfy this assumption. For example, given the
above derivation, what is the prediction of DI given knowledge of the
proportion of EN? The following derivation is true according to the

classical probability calculus (see [10]):

p(DI) = p(DI|EN) + [p(DI|/EN) - p(DIINE)]p(EN) ' [13]

Substituting known values:

p(DI)' .058 + (.561 - .058)p(EN)

.058 +.503p(EN) [14]

Thus, if EN is occurring, the p(DI) = .561 and if EN is not occurring,
p(DI) = .058. However, the linear regression equation fitted to the

sample data is:

p(DI)' = -.176 + .819p(EN) [15]

Making a similar interpretation, if EN is occurring (i.e., p(EN) = 1),
the p(DI) = .643. But if EN is not occurring, the p(DI) = —-.176. Both of
these predictions are incorrect, given the known conditional probabili-
ties from NTPA. Clearly, the NTPA and correlational analysis results

differ in [14] and [15], respectively. The reason for the difference is
that a probability or proportion is restricted to lie in the interval

between zero and one inclusively. Beta weights and constants in regres-—
sion analysis are not so constrained. According to the regression equa-

tion [15], the proportion of DI is predicted to be negative when the

proportion of EN is zero. This result makes no sense. By definition a



77
probability or proportion must be a positive real number between zero
and one inclusively.

Upon more careful examination it appears that NTPA and correlational
analysis will provide equivalent information only when it is the case
that the slope of the regression line is such that when the independent
variable is equal to zero or one, the predicted value of the dependent
variable also lies between zero and one inclusively. This is possible
on}y when certain features of the marginal distributions constrain the
joint probability distribution.

In general, correlational analysis and NTPA will not be systemati-
cally related. This is due to the fact that there is usually no unique
solution for obtaining joint probabilities given only marginal probabil-
ities. Consider Table 3. If data are related in correlational analysis,
only the marginal probabilities are known and can be utilized. Given the
marginals, there is generally no unique solution for determining the
joint probabilities. This can be proved as follows (all probabilities

greater than or equal to zero and less than or equal to one):

p(DI) + p(NDI) =1 [16]
p(EN) + p(NE) =1 [17]
p(EN & DI) + p(NE & DI) = p(DI) [18]
p(EN & NDI) + p(NE & NDI) = p(NDI) [19]
p(EN & DI) + p(EN & NDI) = p(EN) [20]
p(NE & DI) + p(NE & NDI) = p(NE) [21]

If p(DI) and p(EN) are known, p(NDI) and p(NE) are uniquely deter—

mined by [16] and [17]. This is only true, however, when a classification



78

Table 3. Joint and Marginal Probabilities for the Simultaneous
Occurrence of Types of Instruction and Student
Orientation to Instruction. The Joint Probabilities
Are in the Cells and the Marginal Probabilities Are

the Respective Row and Column Totals of the Cells.

EN NE
DI A = p(EN & DI) | B = p(NE & DI) K = p(DI)
NDI C = p(EN & NDI) | D = p(NE & NDI) | L = p(NDI)

M = p(EN) N = p(NE)
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consists of two mutually exclusive and exhaustive categories. Thus,
these values may be substituted into [18] through [21]. There are four
equations and four unknown joint probabilities. To simplify notationm,
let A = p(EN & DI), ... etc., as given in Table 3. Re-writing [18]

through [21] in matrix form and substituting letters for the probability

expressions:
1A+ 1B+0C+0D=K (=1-~-1) [18']
0A+0B+1C+1D=1L (=1 -K) [19']
I1A+0B+1C+0D=M (=1 -0N) [20']
QA+ 1B+0C+1D=N (=1 -M) : [21']

The determinate of the matrix of coefficients is zero:

1 1 0 O

det. = |0 0 1 1 =0
1 01 0
0 1 0 1

There is no unique solution to this set of equations, since the deter-
minate of the matrix of coefficients is zero. This will be true in
general, regardless of the number of categories in each classification
and the number of classifications. The mathematical conclusion is that
there is no way to uniquely determine the joint probability distribution
given only the marginal probability distribution, except in a few
special cases where the marginal probabilities are zeros and ones, or

all equal.
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On the other hand, the marginal probabilities do constrain the range
of the joint probability distribution. Given the above equations, the

following inequalities are derived:

M>A<K [22]
N>B<K [23]
L>C<M [24]
L>DXN [25]

Moreover, even in the special cases when the conditional probabili-
ties can be predicted from a linear regression equation, the variance of
the conditional probabilities cannot be estimated, given only knowledge
of the marginal probability distributions. 1In NTPA, not only can the
conditional probabilities be estimated, but also their variances. There-
fore, correlational analysis cannot be reduced to NTPA, although NTPA
can be reduced to correlational analysis if a functional relation is
desired.

The nonmetric path diagrams resulting from NTPA are as follows:

DI
.97

EN [p3]
.57

NDI
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and

DI
.56
EN: [P4]
44

NDI

Compare [P3] and [P4] with [P1l] and [P2]. Conventional metric path analysis
provides two path coefficients of the same absolute value (+.57) for
these four paths-—-i.e., directionality is undiscriminated due to the
symmetric nature of the correlation coefficient, and the sign difference
of the path coefficients is due to the ipsative nature of the categories
in the two-category classification of type of instruction. In NTPA di-
rectionality is interpreted as conditional probabilities when the tempo-
ral sequence is unknown and as temporal conditional when the temporal
sequence is known. In the sample data being investigated, temporal se-
quence is unknown, since the classifications were characterized conjoint-
ly at each sampling moment. Thus, if DI is occurring, the expected
probability of EN also occurring at the same time is estimated to be
-97. If NDI is occurring, the expected probability of EN also occurring
at the same time is estimated to be .57. The variance of these mean
probabilities can also be estimated and confidence intervals generated.
In metric path analysis, these conditional probabilities were not
considered; hence, the path coefficients of the same absolute value were
were obtained. In addition, when directionality (conditiomality) is

reversed in NTPA (see [P4]), different results are possible. This is due
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to the fact that a conditional relation is asymmetric. It is patent that
NTPA provides more information about the nature of a relation than does
correlational analysis. One can always perform a correlational analysis,
if desired, given NTPA data; but one can do the converse only in a very

restricted set of cases.

The Linear Models Approach: Analysis of Variance (ANOVA)

Cronbach (personal communication) asserted that NTPA merely repre-
sents an analysis of variance (ANOVA), where the design is sliced in an
unconventional manner. Following his suggestion, a randomized block
design can be generated, where subjects are treated as blocks and the
independent variable is type of instruction. The dependent variable is
student engagement (EN) and the levels of the independent variable are
direct ianstruction (DI) and non-direct instrugtion (NDI). This is essen-—
tially a repeated measures design, where a measure of the proportion of
EN is obtained for each subject (system) under each of the two so-called
treatment conditions (DI and NDI). In Table 4 it can be seen that dif-
ferences between the DI and NDI means are highly significant (p < .001).
In standard interpretation the null hypothesis, that the difference
between treatment means is equal to zero, is rejected. Thus, the alter-
native hypothesis that the difference between treatment means is greater
than zero is not rejected (i.e., accepted). Strength of association
between the independent and dependent variable is-;stimated to be .793,
using the statistic, eta squared. The mathematical model upon which this
ANOVA is predicated is given:

X.. = +
ij u + Bj + “i si.

J



Table 4. Analysis of Variance Summary of NTPA-Aggregated Data

Source S8 daf
Type of Instruction 1.9416 1
Subjects (Systems) . 2602 24
Residual .2437 24
Total 2.4455 49

p(EN[DI) p(ENINDI)

Mean .967 .573
S.D. .029 ;142
Skewness -.698 -.677
Kurtosis -.702 +.796

**% p < 001

us F
1.9416 191, 3%*%
0.0108

0.0102

83
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where:

u = grand mean of treatment populationms, which is constant
for all observations.

B. = effect of treatment j, which is constant for all

J observations within treatment population i, Z Bj = 0.
T, = a constant associated with block i, I L 0.

i 1

€,. — experimental error, which is independent of other e's
1] and is normally distributed within each treatment

population with mean = 0 and variance = 02 . (Kirk,
1968, p. 135) &

If the assumptions which underlie this model are met, then ANOVA is a
viable method of treating NTPA data aggregrated as conditional probabil-
ities or proportions. These assumptions are now examined.

Independence of observations. 1In a traditional ANOVA it is assumed

that observations are independent. That is, any given subject's score is
presumed not to systematically influence any other subject's score on
the dependent variable. This assumption appears to be met within each
so-called treatment condition, since individual student-instructor sys-
tems were randomly sampled and each system represents a different class-
room. However, there may be dependence of a subject's score in one
treatment condition and his or her score in the other treatment condij-
tion. For example, a student who is more likely to be engaged during
direct instruction may also be more likely to be engaged during no di-
rect instruction. In this set of sample data the correlation between
p(EN|DI) and p(EN|NDI) is equal to -0.0003. This is an additional as-
sumption required for randomized block and other repeated measures de-—
signs. However, there is a direct test of this assumption, described

below.
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Observations drawn from normally distributed populations. Each of

the treatment population distributions is assumed to be normal in form.
Using the sample data as estimates of the respective population distri-
butions, both distributions are negatively skewed; kurtosis is negative
for p(EN|DI) and positive for p(EN|NDI). See Table 4. Statisticians have
shown that ANOVA is fairly robust with respect to violations of normali-
ty if the sample size is relatively large and the treatment groups are
of equal size (Kirk, 1968; Hays, 1973). Moreover, it is recommended that
a suitable transformation be used on the data to make the distribution
more normal in form when this assumption is violated. For proportional
data, as is the case here, an arcsin transformation is often recommend-
ed, particularly since proportions close to zero or one necessarily have
skewed sampling distributions.

Homoscedasticity. Variances of the population treatment groups are

assumed to be equal. This assumption appears to be violated seriously
with these sample data. Foax (Hartley, 1950) is 24.86 and statistically
significant (df = 2,24, p < .05), thus indicating the variances are not
homogeneous. Cochran's C (1941) is .961, also statistically significant
(df = 2,24, p < .05).

Homogeneity of population covariances. An additional assumption is

necessary in a randomized block design. It is assumed that the popula-
tion covariances for all pairs of treatment levels are homogeneous, as
well as the variances within treatment levels. The symmetry of the
variance-covariance matrix can be tested for significance by means of a
procedure described by Kirk (1968). The observed chi square is 41.874,
which is greater than X?.OS, df=1] = 3-841, implying that the data depart

from the required symmetry. This should be expected, since the
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ances are equal in the two-treatment situation and it was already
concluded that the variances were not homogeneous.

These assumptions are required in order to make a valid inference
from a univariate F test. If a multivariate test such as Hotelling's IZ

is used, the only assumption is that the populations are multivariate

normal.

Comparison of NTPA and ANOVA

There is a more basic issue, however, even if the statistical as-
sumptions of ANOVA are met in NTPA. Ordinarily in ANOVA, the score for
each case is considered to be the outcome of a trial--i.e., the result
of manipulation of a level of the independent variable. These trials are
replicated across cases which are randomly selected and assigned to
treatment conditions. In NTPA the method of aggregation is atypical for
ANOVA. That is, a score for each case (system) in a treatment condition
represents the proportion of outcomes which were EN when the so-called
treatment was present. There was no true experimental manipulation of
treatments (types of instruction, either DI or NDI). Rather, so-called
treatment conditions were observed as they naturally occurred in each
classroom. Some students were exposed to more or less of a given treat-
ment condition than others. By converting to proportions, the amount of
each treatment condition was normalized. This is clearly an atypical
manner of deriving measurements of each case under each treatment
condition.

More importantly, in ANOVA it is assumed that treatment effects are

linear and additive, as represented by the general mathematical model:
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Each case's score is assumed to consist of the grand mean, plus a devia-
tion from the grand mean (Bj), plus an error component. The treatment
effect (Bj) for each case is assumed to be constant for all cases within
a treatment condition and errors are assumed to be normally and indepen-
dently distributed. Moreover, errors are presumed to be uncorrelated
with treatment conditions and with each other.

In NTPA no assumptions are made concerning linearity and additivity
in the relationship between independent and dependent variables, nor is
any distinction made between independent and dependent variables.
Rather, the nonmetric temporal path ;tself is considered in NTPA as a
single random variable. The connection between or among the parts of a
relation is viewed as temporal (i.e., sequential, simultaneous or-condi—
tional). A prior or conditional part of a relation is not considered as
a treatment in the experimental sense. Thus, temporal relations are sim-
ply observed, enumerated and converted to proportions (or relative fre-
quencies) for each system under consideration. The results of NTPA do
not explain why a relation occurs, but simply that it does with an

estimated probability.

General Remarks Concerning NTPA and the IMA

It has been demonstrated that NTPA data can also be subjected to the
linear models approach (IMA--correlational analysis and ANOVA), provid-
ing that ome is willing to make additional assumptions about the nature
of the relationship among factors (i.e., that it is deterministic) and

that those assumptions are fulfilled. However, the converse does not
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obtain. Although the IMA is derivable from NTPA, NTPA is not derivable
from the IMA. This is due to the fact that a deterministic system is a
special case of a stochastic system.

Councerning statistical inference in NTPA, the ounly assumption neces-
sary is that of independence of observations. Replications of occur-
rences of a relationship within a system are not considered to be inde-
pendent, although different systems are considered to be independent.
For example, this procedure is no different than summing a respondents's
item scores on an achievement test and forming a proportion indicating
the percent of correct answers. A person's responses to different items
on the test are not likely to be independent. This causes statisticians
no problems as long as one person's responses do not affect another's
responses on the test.

If systems are randomly sampled from a population, then conventional
inferential statistics may be employed (i.e., with the unit of analysis
as the system). There is a problem, however, of not knowing which theo-
retical sampling distribution is appropriate for estimating a confidence
interval which is likely to include the population mean for a given non-
metric temporal path. As mentioned earlier, values of a proportion which
are close to zero or ome will have skewed sampling distributions. The
problem of which theoretical sampling distribution is appropriate be-
comes less significant when sample sizes become relatively large (n >
500), since the central portions of the various theoretical distribu-
tions (e.g., binomial, beta, Poisson, Gaussian, chi square, etc.) are
very similar in form (Schmidt, 1969).

An alternative approach to estimating a confidence interval is

Tchebycheff's inequality:
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The probability that a standard score drawn at random from the distribu-
tion has absolute magnitude greater than or equal to some positive
number k is always less than or equal to 1/52, regardless of the mathe-"
matical form of the distribution (k is the number of sigma units) (Hays,
1973). For example, given a distribution with some mean and variance,
the probability of drawing a case having a standardized score of 4 or
more must be at most 1/42, or 0.0625. Tchebycheff's inequality is clear-
ly a more conservative approach than one where the form of the sampling
distribution is known.

If it is assumed that the distribution of the random variable is

both symmetric and unimodal, then the inequality becomes (Hays, 1973):

I X -y 4
prob |=m 5 2 K L 7

If this assumption is made, then the probability of randomly drawing a
case having a z-score of 2 or more must be at most 4/[9(22)] = 4/36 =
0.11,

And finally, if it is assumed that the distribution is normal in
form, then the probability of obtaining a z-score of 2 or more is about
0.046.

One might argue that the binomial or chi square distribution would
be appropriate for NTPA. Use of these theoretical distributions does not
appear to be legitimate in NTPA. To use the binomial distrbution one

must assume a stationary Bernoulli process——i.e., that each trial is
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independent and has the same probability of an outcome as any other
trial. If each instance of a relation (i.e., trial) in a system is inde-
pendent of each other instance, then these distributions could be
legitimately used. However, this assumption appears unwarranted in NTPA.
For example, student engagement (EN) on one occasion may be related to
that same student's engagement on another——i.e., trials (replications)
within a system are not likely to be independent. The same argument

obtains for not using chi square as a theoretical sampling distribution.

Summarz

It has been demonstrated by an empirical example and proved mathema-
tically that the IMA cannot be reduced to NTPA, due to the difference in
approach to the measurement of a relation. Additional assumptions are
made in the IMA which are not madg in NTPA. It was further shown that if
these assumptions are made (and fulfilled) NTPA-aggregated data can be
analyzed by the LMA. However, the IMA conclusions are restricted by the
assumptions of linearity and additivity.

In making statistical inferences about population parameters of an
NTPA reiation, it is the case that the form of the mathematical sampling
distribution is unknown, thus making it more difficult to legitimately
construct a confidence interval that is likely to contain the population
mean. Two alternatives were suggested: use large samples or
Tchebycheff's inequality. A third alternative is to transform probabil-
istic measures of a relation by the arcsin transformation or some other
suitable transformation so as to approximate a normal distribution. Then

one can more legitimately construct confidence intervals around
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transformed score means and subsequently convert these back to the
original metric in a mannner similar to Fisher's r to z transformation.
Data collected by means of NTPA contain more information than in the
LMA. Thus, it is possible to investigate relations a posteriori in the
data that may not have been anticipated when the data were initially
collected, since the raw NTPA data preserve the temporal nature of oc-
currences of events characterized by the classifications of interest.
Theoretically, given the a priori classifications, all possible non-
metric temporal paths could be investigated, although the number of
possible temporal paths expands geometrically with the number of classi-
fications, categories within each classification, and the lengths of
paths investigated. Theory is expected to guide the selection and
investigation of relations in NTPA, as it is for scientific inquiry in

general.



